Fehlende transversale Energie		
- Signalrekonstruktion am LHC -		
Lisa Mövius Sommerakademie Neubeuern 2008, AG 2		

Gliederung

- 1 Einleitung
- 1 Bestimmung von E_{miss} bzw. $E_{T,miss}$
- $_{\mbox{\scriptsize 1}}$ Rekonstruktion fehlender $E_{\mbox{\scriptsize T}}$, Trigger am Beispiel:
 - 1 SUSY-Suche
 - 1 Extra Dimensionen
- 1 Zusammenfassung

Einleitung: fehlende transversale Energie

- Nicht elektromagnetisch oder stark wechselwirkende Teilchen: kein Signal im Detektor
- Bsp: Neutrinos, Neutralinos, dunkle Materie, neue skalare Felder, neue Physik, ...
- $1 \rightarrow$ Energie- und Impulserhaltung?

Einleitung: fehlende transversale Energie

1 Impulserhaltung:

$$\sum_{i=\text{alle Teilchen}} \vec{p}_i = \vec{0} \qquad \Longrightarrow \sum_{i=\text{alle Teilchen}} \left(p_{x,i}, p_{y,i} \right) = \vec{0}$$

1 Impulsdisbalance:

$$-\sum_{i=\text{sichtb.T.}} \vec{p}_i = \vec{p}_{miss} \longrightarrow -\sum_{i=\text{sichtb.T.}} (p_{x,i}, p_{y,i}) = \vec{p}_{T,miss}$$

1 Fehlende transversale Energie:

$$E_{miss} \coloneqq \left| \vec{p}_{miss} \right| \longrightarrow E_{T,miss} \coloneqq \left| \vec{p}_{T,miss} \right|$$

Einleitung: e⁺e⁻ - & Hadron-Collider

- 1 e+e- Collider:
 - 1 e⁺ & e⁻ : Leptonen
 - ≈ kein longitudinales
 Signal
 - E_{miss} komplett bestimmbar
 - 1 Invar. Masse bestimmbar

- 1 Hadron Collider:
 - 1 Hadronen
 - großes longitudinales Signal
 - 1 Nur E_{T,miss} bestimmbar
 - Invar. Masse nicht bestimmbar

Einleitung: E_{T,miss} Messung am CMS

CMS: Hadroncalorimeter Energy towers: winkelabhängige E-Messung

Bestimmung:Summiere über Detektorzellen mit Energie E_n und polarem, azimutalem Winkel θ_n, ϕ_n

$$E_{T,miss} = \sum E_n \sin \theta_n \cos \theta_n \hat{x} + E_n \sin \theta_n \sin \varphi_n \hat{y}$$

= $E_{x,miss} \hat{x} + E_{y,miss} \hat{y}$

Aus [1], Figure 11.2: The η , ϕ segmentation of the CMS hadron calorimeter

$\mathbf{E}_{\mathrm{T,miss}} \, \mathrm{im} \, \mathrm{CMS}$

- 1 Probleme:
 - 1 pile-up Collisions
 - Unterschied Photon- u. Muon-Empfindlichkeit (Kombination ECAL und HCAL)
 - Spurkrümmung im 4T Magnetfeld
- 1 Chancen:
 - 1 Exzellente Zellsegmentierung im Kalorimeter
 - 1 Gute Hermitizität
 - 1 Gute Abdeckung kleiner Winkel

E_{T,miss} **Messgenauigkeit**

Empirische Formel: 1

$$\sigma = C \sqrt{\sum E_T} \text{ GeV}^{1/2}$$

C konst. Faktor, hängt direkt von Jet-Auflösung ab

- 1 Bsp.:
 - 1 UA1, jet-Aufl.: $0.8\sqrt{E_T} \text{ GeV}^{1/2} \rightarrow \sigma_x = \sigma_y = 0.4\sqrt{\sum E_T} \text{ GeV}^{1/2}$ 1 CDF, Run I: $\sigma_x = 0.47\sqrt{\sum E_T} \text{ GeV}^{1/2}$
- CMS? 1
 - 1 Jet-Aufl.: $1.25\sqrt{E_T} \text{ GeV}^{1/2} \rightarrow \sigma_x \approx (0.6 0.7)\sqrt{\sum E_T} \text{ GeV}^{1/2}$
 - Minimum bias event, kein pile-up, Schauerfluktuationen dominant 1

Aus [1], Figure 11.10: minimum bias events with no pile-up. The resolution is 6.1 GeV in agreement with expectations based on a stochastic term and a noise contribution of 3.8 GeV

Aus [1], Figure 11.11: soft QCD events ($0 < p_T < 15 GeV$) with pile-up. The resolution is 9.9 GeV in agreement with expectations based on the study with minimum bias events.

Aus [1], Figure 11.12: Missing transverse energy resolution vs. E_T for QCD soft events, $0 < p_T < 15$ GeV/c, (squares) and minimum bias events (open circles). Low-luminosity pile-up is included in both cases.

E_{T,miss} Korrektur

E_{T,miss} Korrektur durch Jetenergie-Korrektur (Linearisierung)

Aus [1], Figure 11.18: Missing transverse energy resolution before (open circles) and after jet corrections (filled circles) for inclusive t⁻ t events vs. reconstructed $E_{T,miss}$.

E_{T,miss} in der SUSY-Suche

- ¹ Zerfall der sparticles \rightarrow 2 Neutralinos (LSP)
- 1 LSP stabil, nicht detektierbar $\rightarrow E_{\text{miss}} \geq 2m_{\tilde{N}}$
- 1 nur E_{T,miss} bestimmbar

SUSY-Signale allgemein:

n Leptonen + *m* Jets + $E_{T,miss}$

(entweder n oder m können Null sein)

Problem: ■ viele mögliche SM-Untergründe (W,Z → Neutrinos)

E_{T,miss} in der SUSY-Suche

Problem:

Problem.
SM-Untergründe (W,Z → Neutrinos)

Identifiziere Signale, deren Untergrund reduziert werden kann:

1) Jets + E_{T.miss} (ohne einz. Leptonen)

- 2) Trilepton-Signal
- 3) Same-charge Dilepton-Signal

E_{T,miss} Rekonstruktion am Bsp. 3j+E_{T,miss}

- Suche nach ≥3jet-Events mit großer E_{T,miss}
- 1 E_{T,miss} aus 2 LSP (Squark, Gluino Zerfälle)
- Jets aus hadronischen Zerfällen der Squarks und/oder Gluinos
- SM Untergründe: W+j, Z+j, top-antitop, di-bosons, single tops, QCD jets
- mSugra: $M_0 = 60 \text{ GeV/c}^2$, $M_{1/2} = 250 \text{ GeV/c}^2 \text{ A}_0 = 0$, $\mu > 0$ and tan $\beta = 10$ (LM1 test point)

E_{T,miss} Rekonstruktion am Bsp. 3j+E_{T,miss}

Table 13.5: The E_{T}^{miss} + multi-jet SUSY search analysis path

Requirement	Remark		
Level 1	Level-1 trigger efficiency parametrisa		
HLT, $E_T^{miss} > 200 \mathrm{GeV}$	trigger/signal signature		
primary vertex ≥ 1	primary cleanup		
$F_{em} \ge 0.175, F_{ch} \ge 0.1$	primary cleanup		
$N_j \ge 3, \eta_d^{1j} < 1.7$	signal signature		
$\delta\phi_{min}(E_T^{miss} - jet) \ge 0.3 \text{ rad}, R1, R2 > 0.5 \text{ rad},$			
$\delta\phi(E_T^{miss} - j(2)) > 20^\circ$	QCD rejection		
$Iso^{lead\ trk} = 0$	ILV (I) $W/Z/t\bar{t}$ rejection		
$f_{em(j(1))}, f_{em(j(2))} < 0.9$	ILV (II), $W/Z/t\bar{t}$ rejection		
$E_{T,j(1)} > 180 \text{GeV}, E_{T,j(2)} > 110 \text{GeV}$	signal/background optimisation		
$H_T \equiv E_{T(2)} + E_{T(3)} + E_{T(4)} + E_T^{miss} > 500 \text{GeV}$	signal/background optimisation		
SUSY LM1 signal efficiency 13%			

E_{T,miss} Rekonstruktion am Bsp. 3j+E_{T,miss}

- 1. Hardware Trigger:
 - L1: $E_{T,miss} > 46 \text{ GeV},$ central jet mit $E_T > 88 \text{ GeV}$
 - 1 HLT: $E_{T.miss} > 200 \text{ GeV}$
- 2. Clean-up
 - 1 Mind. 1 Primärer Vertex
 - $F_{em} > 0.1 \text{ (event} \\ electromagnetic fraction) \\ und F_{Ch} < 0.175 \text{ (event} \\ charged fraction) um fake \\ jets auszuschließen$

Requirement	Remark		
Level 1	Level-1 trigger efficiency parametrisation		
HLT, $E_T^{miss} > 200 \text{GeV}$	trigger/signal signature		
primary vertex ≥ 1	primary cleanup		
$F_{em} \geq 0.175,F_{ch} \geq 0.1$	primary cleanup		
$N_j \ge 3, \eta_d^{1j} < 1.7$	signal signature		
$\delta \phi_{min}(E_T^{miss} - jet) \ge 0.3 \text{ rad}, R1, R2 > 0.5 \text{ rad},$			
$\delta\phi(E_T^{miss} - j(2)) > 20^\circ$	QCD rejection		
$Iso^{lead\ trk} = 0$	ILV (I) $W/Z/t\bar{t}$ rejection		
$f_{em(j(1))}, f_{em(j(2))} < 0.9$	ILV (II), $W/Z/t\bar{t}$ rejection		
$E_{T,j(1)} > 180 \mathrm{GeV}$, $E_{T,j(2)} > 110 \mathrm{GeV}$	signal/background optimisation		
$H_T \equiv E_{T(2)} + E_{T(3)} + E_{T(4)} + E_T^{miss} > 500 \text{GeV}$	signal/background optimisation		
SUSY LM1 signal efficiency 13%			

Table 13.5: The E_{T}^{miss} + multi-jet SUSY search analysis path

- 3. SUSY Signatur
 - 1 Mind. 3 jets mit ET ≥ 30 GeV im Bereich |η| < 3.0
 - Leading jet im central tracker Bereich $|\eta| < 1.7$

E_{T,miss} **Rekonstruktion QCD Untergrund**

Figure 4.9: $E_{\rm T}^{\rm miss}$ distribution in QCD 3-jet events.

Aus [2]

E_{T,miss} **Rekonstruktion QCD Untergrund**

Figure 4.10: $\delta \phi_1$ versus $\delta \phi_2$ for (left) SUSY signal and (right) QCD di-jet events

E_{T,miss} **Rekonstruktion** W/Z/top-Antitop Untergrund

$\psi(E_T = J(2)) > 20$	
$Iso^{ltrk} = 0$	ILV (I) $W/Z/t\bar{t}$ rejection
$f_{em(j(1))}, f_{em(j(2))} < 0.9$	ILV (II), $W/Z/t\bar{t}$ rejection
$E \sim 100 C_{\rm e} W E \sim 110 C_{\rm e} W$	signal /hasterround antimisation

SUSY Event hat kein explizites Lepton → indirect lepton veto

Effizienz ILV (I):

- Leading track in eine ≈ 92% für das SUSY Signal ≈ 50% des W/Z+j Signals entfernt
- Σp_T (in Kegel $\Delta R=0.35$) / $p_T < 10\%$
- \rightarrow Event abgelehnt

Figure 4.12: Electromagnetic fraction of (left) leading and (right) second jet in $W \rightarrow e\nu + \ge 2$ jets events.

Figure 4.13: Electromagnetic fraction of (left) leading and (right) second jet in SUSY LM1 events

E_{T,miss} Rekonstruktion Signal/Untergrund Optimierung

SUSVIM1 signal officiency 13%

- 1 Bedingung an führende jets: 180 bzw. 110 GeV
- 1 $H_T = E_{T(2)} + E_{T(3)} + E_{T(4)} + E_{T,miss} > 500 \text{ GeV}$

Table 4.3: Selected SUSY and Standard Model background events for 1 fb⁻¹

Signal	$t\bar{t}$	single t	$Z(\rightarrow \nu \bar{\nu}) + \text{jets}$	(W/Z,WW/ZZ/ZW) + jets	QCD
6319	53.9	2.6	48	33	107

E_{T,miss} **Rekonstruktion Ergebnis**

Table 13.5: The E_{T}^{miss} + multi-jet SUSY search analysis path

Requirement		Remark		
Level 1		Level-1 trigge	er efficiency parametrisation	
HLT, $E_T^{miss} > 200 \text{GeV}$		trigger/signa	ll signature	
primary vertex ≥ 1	primary cleanup		nup	
$F_{em} \geq 0.175$, $F_{ch} \geq 0.1$	primary cleanup		nup	
$N_j \ge 3, \eta_d^{1j} < 1.7$	Gesamteffizienz		re	
$\frac{\delta\phi_{min}(E_T^{miss} - jet) \ge 0.3 \text{ rs}}{\delta\phi(E_T^{miss} - j(2)) > 20^{\circ}}$	≈ 13% für das Sl	JSY Signal	1	
$Iso^{lead\ trk} = 0$			\overline{t} rejection	
$f_{em(j(1))}, f_{em(j(2))} < 0.9$	Signal/Untergrun	nd ~ 26	$t\bar{t}$ rejection	
$E_{T,j(1)} > 180 \text{GeV}, E_{T,j(2)} >$	• 110 GeV	signal/backg	round optimisation	
$H_T \equiv E_{T(2)} + E_{T(3)} + E_{T(4)} + E_T^{miss} > 500 \text{GeV}$ signal/background optimisation			round optimisation	
SUSY LM1 signal efficiency 13%				

E_{T,miss} in der Suche nach extra **Dimensionen**

- 1 Graviton-Produktion: Photon+Graviton
- 1 Graviton nicht detektiert, E_{T,miss}
- 1 möglicher Suchkanal: einzelnes Photon + E_{T,miss}

Suche nach extra Dimensionen: Trigger und Eventauswahl

- ¹ Charakterisierung des γ +E_{T,miss} Signals:
 - ein einzelnes Photon mit hohem Transversalimpuls im zentralen Detektorbereich
 - 1 Hoher $p_{T,miss}$ in entgegengesetzter Richtung in der azimutalen Ebene mit gleicher p_T -Verteilung
- 1 Topologische Kriterien und Untergrundreduktion:
 - $1 \quad E_{T,miss} \ge 400 \text{ GeV}$
 - 1 Photon: $p_T \ge 400 \text{ GeV/c}$
 - $|\eta| < 2.4$
 - 1 $\Delta \phi (E_{T,miss}, \gamma) > 2.5$
 - 1 Track Veto für Teilchen mit $p_T > 40$ GeV/c (Untergrund hochenergetischer geladener Teilchen wie e±, µ±, jets)
 - Isolated Lepton Likelihood Kriterium (Untergrund harter Photonen aus Jets oder fake photons auf Jets)

Simulationsergebnisse

Figure 14.20: Spectrum of the missing E_T for all backgrounds (black histogram) and for an example signal sample ($M_D = 2.5 \text{ TeV}$, n = 2). The number of events corresponds to an integrated luminosity of 30 fb⁻¹.

Zusammenfassung

- 1 Definition von $E_{T,miss}$
- 1 Messung, Detektortuning
- Beispiele f
 ür Signalrekonstruktion: SUSY-Suche, Suche nach extra Dimensionen

Vielen Dank für Ihre Aufmerksamkeit

Quellen:

- [1] CMS Technical Design Report, Volume I: Detector performance and Software CERN/LHCC 2006-001,
- [2] CMS Technical Design Report, Volume II: Physics Performance, CERN/LHCC 2006-021,
- [3] G. Kribs: TASI 2004 Lectures on the Phenomenology of Extra Dimensions